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Generalized cholesteric permeation flows
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The permeation flow equations of cholesteric liquid crystals are derived using a decoupled formulation of the
Leslie-Ericksen equations. The formulation sheds light on the role of Ericksen elastic stresses in permeation
flows. The Darcy flow regime is shown to emerge in the absence of velocity gradients. The permeation flow
equations are generalized to gravity driven flow and used to analyze a free-boundary film flow over an inclined
plane.
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I. CHOLESTERIC ORDERING, PERMEATION FLOWS,
AND LESLIE-ERICKSEN EQUATIONS

Cholesteric liquid crystals~CLCs! are biological and syn-
thetic materials whose average macroscopic molecular or
tationno exhibits a twist distortion in the direction normal t
the molecules@1# known as the cholesteric helix orientatio
p. Examples of CLCs are solutions of DNA@2#, polypep-
tides, and hydroxypropylcellulose@1#. Previous work on the
shear flow of CLCs has consideredpiv @1,3#, along“v @4,5#,
and along the curlv @6–9#, wherev is the velocity. Recent
reviews can be found in the literature@1,10–12#. Studies of
CLCs under shear have shown that the materials are hi
dependent on the angle betweenp andv. Capillary Poiseuille
flow when the helix is along the velocity direction leads,
small pressure drops, to a highly viscous permeation fl
The main characteristic of the permeation mode is its h
viscosity @13#. While for all other flow geometries CLC
have apparent viscosities of the same order of magnitud
nematics, for permeation flow, their ratio is of the order 16.
The high viscosity of permeation pressure-driven flow
capillaries has been explained using dissipation argumen
well as the Leslie-Ericksen~LE! equations for CLCs@1,3#. In
these works, the analysis is based on the couplings betw
the linear momentum and director torque balance equati
but a systematic discussion of the role of elastic stresses
not been presented. Here, we present a different and effic
decoupled formulation that directly leads to the kinemat
of permeation flow. The formulation is based on express
the gradient of the elastic stresses that appear in the li
momentum equation in terms of viscous torques that app
in the director torque balance equation. The driving forc
are generalized to include pressure-driven flow as wel
gravity-driven flow. Last, the formulation is applied to a fre
boundary film flow, where the system size is unknown a
where the parametric conditions lead to a crossover fr
Newtonian film flow to non-Newtonian permeation film flow

The equilibrium state of director orientationno(z) that
represents the average molecular orientation of CLCs is

no~z!5„cosuo~z!, sinuo~z!, 0…, ~1a!
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where ‘‘o’’ denotes equilibrium,uo is the orientation angle a
equilibrium,Po(qo) is the equilibrium pitch~wave vector! of
the helix, or distance in which the director rotates by 2p
radians; we only consider a right-handed helix (qo.0). In
contrast to nematics, CLCs have an intrinsic length sc
given by the equilibrium pitchPo . This means that at length
scales shorter thanPo , a CLC is similar to a nematic, but a
length scales longer thanPo , a cholesteric is a layered liquid
similar to a smectic-A liquid crystal. The Leslie-Ericksen
~LE! balance equations for cholesteric liquid crystals, us
cartesian tensor notation, are@1#

v i ,i50, ~2a!

% v̇ i5%gi1t j i , j
ve 2p, j1d j i , ~2b!

sni5h1
me1hi

v . ~2c!

The fluid is assumed to be incompressible;r is the density
andp is the pressure. The superposed dot denotes the m
rial time derivative. The inertia of the director is neglecte
The mechanical quantities appearing in the LE theory
defined as follows:rgi : gravitational force per unit volume
t i j
ve: viscoelastic stress tensor,hi

me: magnetoelastic molecula
field, hi

v : viscous molecular field,s is a Lagrange multiplier
due to the director unit length restriction:n•n51. In the
absence of temperature and the constitutive, equations
given by

t̂5tve1tE, ~3a!

tve5a1nn:Ann1a2nN1a3Nn1a4A1a5nn•A1a6A•nn,
~3b!

tE52
] f d

]“n
•~“n!T, ~3c!

hv5g1N1g2A•n, ~3d!

hme52
dF

dn
, ~3e!

2A5“v1~“v!T, ~3f!

N5
]n

]t
1v•“n1W•n, ~3g!
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W5@“v2~¹v!T#/2, ~3h!

F5E ~ f d1 f m!dV, ~3i!

2 f d5K11~“•n!21K22~n•“3n1qo!21K33~n3“3n!2,
~3j!

f m52
xa

2
~n•H!2, ~3k!

g15a32a2 ~3l!

g25a31a2 , ~3m!

wheretve is the viscoelastic extra stress tensor,tE is the elas-
tic Ericksen stress, the viscosities$a i ,i 51,...,6% are the Le-
slie coefficients,dF/dn denotes the functional derivative o
the free energyF, A is the rate of deformation tensor,N is
the director Jaumann derivative,W is the vorticity tensor,f d
is the Frank free-energy density,$K i i ,i i 511,22,33% are the
Frank elasticity coefficients for splay, twist, and bend,f m is
the magnetic energy density,xa is the anisotropic magneti
susceptibility,g2 is the irrotational torque coefficient, andg1
is the rotational viscosity. In the Leslie theory of CLCs, t
pitch-dependent internal timet i and length scalesl i are

t i5
g1qo

22

K
, ~4a!

l i5
1

qo
, ~4b!

while the external time and length scales are

te5t5
g1H2

K
, ~5a!

l e5H, ~5b!

whereH is the characteristic system size. The ratio of orie
tation time scale to an imposed flow time scale is known
the Ericksen number. Since CLCs have two time scales,
two dimensionless Ericksen numbers that characterize
ratio of orientation to flow time scales are

Ei5
g1qo

22ġ

K
, ~6a!

E5
Y1H2ġ

K
, ~6b!

whereġ is the characteristic deformation rate, andK5(K11
1K221K33)/3 is the average Frank elastic constant. The
ternal Ericksen numberEi gives the ratio of the internal time
scale to the flow time scale, while the external Ericksen nu
ber E gives the ratio of the external time scale to the flo
time scale. In actual experiments@1# it is found

t i!te , ~7!

which means that an imposed weak flow will only affect t
global orientation but not the pitch. In this report, we defi
weak flow whenEi is of order of unity. Whenl i!l e , the
02270
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presence of the large parameter (L5qoH@1) in the LE
equations signals the existence of boundary layer behav

Permeation CLC flow in a narrow capillary is obtaine
when the wall orientation is compatible with the helix stru
ture and when the imposed pressure drop is low. The id
permeation flow mode of a CLC emerges when the helix
along the flow~z! direction and the following kinematic an
orientation conditions are satisfied@1#

W5A50, ~8a!

n5no , ~8b!

]n

]t
50, ~8c!

N5~v•“ !no5vz

dno

dz
. ~8d!

Thus in the ideal permeation flow, the velocity gradient
zero, the helix is undistorted, and the director Jaumann
rivative is equal to the convection of orientation. The co
vected orientation rotates with an angular velocity that
actly matches the pitch of the helix, dissipating energy due
the director rotation, and giving rise to a large apparent v
cosity. The ideal permeation flow neglects the bound
layer of thicknessqo

21 in which viscous effects are not neg
ligibly. Under these restrictions, the apparent viscosityhapp
for an ideal steady Poiseuille permeation CLC capillary flo
under pressure gradientDp, in a capillary of radiusR is @1#

happ5
1
8 g1~qoR!2 . ~9!

Using @1#, the following actual values:R5300mm andqo
51025 cm21, the apparent viscosity has a magnitude o
nematic rotational viscosity times a factor of 106, as mea-
sured by Sakamoto, Porter, and Johnson@13#.

II. FORMULATION OF THE LESLIE-ERICKSEN LINEAR
MOMENTUM BALANCE EQUATION FOR

CHOLESTERIC PERMEATION FLOW

Next, we give a detailed analysis of generalized perm
ation flow, taking into account boundary layers, using a
coupled formulation. The decoupled formulation aims
finding permeation flow kinematics without resorting to t
use of the director torque balance equation. In addition,
formulation sheds light on the role of the Ericksen elas
stresses. The spatial gradient of the director-dependent
ergy density,f 5 f m1 f d , is given by

¹ f 5
] f

]n
•~“n!T1

] f

]¹n
:~¹¹n!T. ~10!

Using this expression in Eq.~3c!, the divergence of the
Ericksen stress tensor is shown to be

“•tE52~“ f !1
] f

]n
•~¹n!T2S ¹•

] f

“nD •~“n!T. ~11!

Taking the product of the director torque balance Eq.~2c!
with the director gradient tensor (“n)T we find
1-2
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hme
•~“n!T1hv

•~“n!T52
] f

]n
•~“n!T

1S“•

] f d

]“nD •~¹n!T , ~12!

and hence the following general relation between the Er
sen elastic forces, energy gradients, and viscous molec
field is established:

“•tE52~“ f !2hv
•~“n!T

52~“ f !2S g1

]n

]t
1v•“n1W•n1g2A•nD •~“n!T.

~13!

Equation~13! is valid for any velocity and director fields
Equation~13! shows the conditions under which the Eric
sen elastic forces may play an important role:~i! when the
gradients of the Frank energy are not zero,u(“ f )uÞ0,
and/or ~ii ! when the uhv

•(“n)TuÞ0. An example, of the
former is one-dimensional~1D! permeation flow of a CLC
with wave-vectorqo along thez direction and velocity field
v5(0,0,vz), the leading-order term in the Ericksen force
the flow direction is

~“•tE!•k52hv
•~“n!T

•k52g1~v•“n!•~“n!T

52g1qo
2vz , ~14!

showing that the elastic Ericksen force is due to the conv
tion of orientation (v•“n). Next, we consider the linear mo
mentum balance equation and replace the gradient of
Ericksen stress with the right hand side of Eq.~13!. Neglect-
ing inertia, the linear momentum balance Eq.~2b! then be-
comes

v~x!5
F

g1
:@2“~p1 f d1 f m1 f g!1“•tve

2~hv2g1v•“n!•~“n!T#, ~15a!

F5@„~“n!•~“n!T
…

21#T, ~15b!

whereF is the anisotropic permeability, andf g5%(g•x) is
the gravitational energy. This equation is an alternative
generalized expression of the linear momentum bala
equation for CLCs in the absence of inertia. In the absenc
significant viscous deformation (A50,W50) the Leslie Eq.
~15! generalizes Darcy law

v~x!5
F

g1
•@2“~p1 f d1 f m1 f g!#. ~16!

Projecting Eq.~15! along ~i! and normal~'! to the pitch
direction (k), we find the velocity fields (vi ,v')

vi~x!5
F

g1
:@2“~p1 f d1 f m1 f g!1“•t

8
ve

2~hv2g1v•“n!•~“n!T#•kk , ~17a!
02270
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v'~x!5
F

g1
:@2“~p1 f d1 f m1 f g!1“•tve

2~hv2g1v•“n!•~“n!T#•~ I2kk !. ~17b!

Equations~17a!, ~17b! is the LE linear momentum balanc
equations along the helix and perpendicular to the helix,
spectively, in the absence of inertia, and in the presenc
arbitrary director distortions. Next, we focus on the use
Eq. ~17a! to analyze slow permeation flow problems wh
inertia is negligible and director distortions are weak. In t
small director distortions regime, several terms in Eq.~17a!
can be ignored, as shown in what follows. Cholesteric p
meation flow exists when the main flow is along the he
axis and the flow is sufficiently weak such that the direc
field is planar and chiral

n5no1~p3no!w, ~18!

wherep is the unit vector along the helix~z! axis, andw is a
small twist distortion. In the linear regime, the main flo
velocity in thez direction, obtained from Eq.~17a! is, in the
absence of magnetic fields, given by

vz~x!5vi•k5
1

qo
2g1

•@2“~p1 f g!1“•tove
#•k, ~19!

where the superscript ‘‘o’’ denotes the linear regime. Averag
ing the linearized viscoelastic stress term in Eq.~19! over the
pitch, it is found

“•tove
•k5h f¹'

2 , ~20a!

h f5
~ha1hc!

2
, ~20b!

ha5 1
2 a4 , ~20c!

hc5 1
2 ~2a21a41a5!, ~20d!

where' denotes the normal plane tok, h f is the average of
the nematic Miesowicz viscositiesha and hb @1#. The gen-
eral expression of the primary velocity for permeation flo
obtained without explicity consideration of the director fie
is

vz~x,y!5
1

qo
2g1

•F2
]

]z
~p1 f g!1h f¹'

2 vzG . ~21!

III. APPLICATION: GRAVITY-DRIVEN PERMEATION
FLOW

As an application of Eq.~21!, we consider the gravity-
driven flow over an inclined flat plate, with a given flow ra
Q, of a CLC of pitchqo . Let s be the angle of the plate with
the vertical direction,H be the CLC film thickness along th
velocity gradient~x! direction, andz be the flow and helix
direction. In contrast to pressure-driven Poisueille perm
ation flow in a capillary of fixed radiusR, the film thickness
H in film flow is unknown and a function ofQ, and the flow
will therefore exhibit a Newtonian regime whenH'qo

21 and
a non-Newtonian regime whenH@qo

21. The boundary con-
1-3
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ditions andvz(x) obtained from Eq.~21! are

vz~x!5
1

qo
2g1

•F%g coss1h f

d2vz

dx2 G , ~22a!

x50, vz50, ~22b!

x5H,
dvz

dx
50, ~22c!

whose solutions is

vz~x!5
%g cosw

g1qo
2 @12coshbx1tanhbH sinhbx#.

~23!

The unknown film thicknessH is found by computing the
known flow rate

Q5E
0

H

vz~x!dx, ~24!

which yields the following implicit expression forH(R):

R5bH2tanhbH, ~25a!

R5
Qbg1qo

2

%g coss
, ~25b!

whereR is the ratio of viscous time scale to flow time sca
for gravity-driven flow. The Newtonian regime emerg
whenR'1. Expanding tanhbH to second order yields th
classical Newtonian film thickness expression and the
lowing scalings:

H~Q!5A3 3h fQ

%g coss
, ~26a!

H}Q1/3, ~26b!

HÞ f ~qo!. ~26c!

The film thickness varies nonlinearly with flow rate and
independent of the pitch. The magnitude ofH is of the order
of qo . The non-Newtonian regime arises whenR@1. In this
case, tanhbH!bH and the expression and scalings ofH are

H~Q!5
Qg1qo

2

%g coss
, ~27a!
a

02270
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H}Q, ~27b!

H}qo
2. ~27c!

H varies linearly withQ, depends onqo , andH@qo . The
apparent viscosityhapp for gravity-driven film flow is given
by the shear stress at the wall divided by the shear rate a
wall of a Newtonian fluid flowing with flow rateQ

happ5
%g cossH3

3Q
. ~28!

In the Newtonian regime (R'1), the apparent viscosity
found from Eqs.~26a! and~28!, is the average of the nemati
Miesowicz viscosities

happ5h f5
~ha1hc!

2
. ~29!

In the non-Newtonian regime (R@1), the apparent viscosity
found from Eqs.~27a! and ~28!, is shear thickening

happ5
h fR

2

3
5

g1
3qo

6Q2

3~%g coss!2 . ~30!

In the non-Newtonian regime, the apparent viscosity is s
eral orders of magnitude greater than in the Newtonian
gime.

In conclusion, we have derived a new expression for
Leslie-Ericksen linear momentum balance equation and h
used it to formulate a general equation for the primary
locity in permeation flow of CLCs. The gravity-driven film
permeation flow of a CLC over an inclined plate is analyze
In this free-boundary problem, the system size depends
the flow rate, whose magnitude gives rise to a Newtoni
thin film low apparent viscosity, slow-flow regime, and
non-Newtonian thick film, high apparent viscosity, fast-flo
regime.
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