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Generalized cholesteric permeation flows
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The permeation flow equations of cholesteric liquid crystals are derived using a decoupled formulation of the
Leslie-Ericksen equations. The formulation sheds light on the role of Ericksen elastic stresses in permeation
flows. The Darcy flow regime is shown to emerge in the absence of velocity gradients. The permeation flow
equations are generalized to gravity driven flow and used to analyze a free-boundary film flow over an inclined

plane.
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|. CHOLESTERIC ORDERING, PERMEATION FLOWS, 277
AND LESLIE-ERICKSEN EQUATIONS 0o="5—=0oZ (1b)

Cholesteric liquid crystaléCLCs) are biological and syn- Where “0” denotes equilibrium ¢, is the orientation angle at
thetic materials whose average macroscopic molecular orierquilibrium,P,(qo) is the equilibrium pitcHwave vectoy of
tationn® exhibits a twist distortion in the direction normal to the helix, or distance in which the director rotates by 2
the moleculeg1] known as the cholesteric helix orientation radians; we only consider a right-handed helgy% 0). In
p. Examples of CLCs are solutions of DN&], polypep- cpntrast to nemgltlc's, CL'CS have an intrinsic length scale
tides, and hydroxypropylcelluloga]. Previous work on the 91Ven by the equilibrium pitci, . This means that at length
shear flow of CLCs has considerpitv [1,3], alongVv [4,5], scales shorter thaR,, a CLC is similar to a nematic, b.Ut at
and along the curv [6-9], wherev is the velocity. Recent length scales longer thd,,, a cholesteric is a layered liquid
reviews can be found in the literatuf#,10—-13. Studies of similar to a smectl_d\ liquid crystal. _Th_e L_eslle-Encksen
CLCs under shear have shown that the materials are highl LE) b.alance equations for rc]:aholestenc liquid crystals, using
dependent on the angle betwgeandv. Capillary Poiseuille artesian tensor notation, &)
flow when the helix is along the velocity direction leads, at v;i=0, (2a)
small pressure drops, to a highly viscous permeation flow. . ve
The main characteristic of the permeation mode is its high QU= Gt =Pt i, (2b)
viscosity [13]. While for all other flow geometries CLCs on=hT+h? . (20)

have apparent viscosities of the same order of magnitude as L , . )
nematics, for permeation flow, their ratio is of the ordef.10 ' n€ fluid is assumed to be incompressitpeis the density

The high viscosity of permeation pressure-driven flow in"’}ndp s the pressure. Th.e su_perposed th denotes the mate-
g y P P | time derivative. The inertia of the director is neglected.

capillaries has been explained using dissipation arguments %%e mechanical quantities appearing in the LE theory are

well as the Leslie-Erickse(LE) equations for CLC§1,3]. In ; ) L .
o : defined as followspg; : gravitational force per unit volume,
these works, the analysis is based on the couplings betwee. . .. -
) . 11 viscoelastic stress tensdi]'°: magnetoelastic molecular
the linear momentum and director torque balance equatlongS

but a systematic discussion of the role of elastic stresses h elg’,:)i '.[h\gsgﬁ’iitg]rofr?i?l?err:cl(ilf?l;’lesé‘,taribt?(?l:firr]]g—elmlljrll“?flluear
not been presented. Here, we present a different and efficie 9 e .
absence of temperature and the constitutive, equations are

decoupled formulation that directly leads to the kinematics_.

. S . _“given by
of permeation flow. The formulation is based on expressin
the gradient of the elastic stresses that appear in the linear t=t"e+tF, (33
momentum equation in terms of viscous torques that appear,,

in the director torque balance equation. The driving forced — @1MM:ANN+ aNN+ asNy+ asA+ asnn- A+ agA-nn,

are generalized to include pressure-driven flow as well as (30)
gravity-driven flow. Last, the formulation is applied to a free- af 4
boundary film flow, where the system size is unknown and tE=— m~(Vn)T, (30
where the parametric conditions lead to a crossover from
Newtonian film flow to non-Newtonian permeation film flow. U=y,N+y,A-n, (3d)
The equilibrium state of director orientatian?(z) that
represents the average molecular orientation of CLCs is pme— _ 27 30
on’
n°(z)=(cosb,(z), sinfy(z), 0), (1a) 2A=VVv+(VV)T, (3f)
N= &n+ Vn+W 3
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W=[Vv—(Vv)T]/2, (3h)  presence of the large parametex€q,H>1) in the LE
equations signals the existence of boundary layer behavior.
F:f (fy+f)dV (3i) Permeation CLC flow in a narrow capillary is obtained
mr when the wall orientation is compatible with the helix struc-

ture and when the imposed pressure drop is low. The ideal

— 2 2 2
219= Ky (V- )7+ Koo V XN+ o) "+ Kag(nX V XN)*, permeation flow mode of a CLC emerges when the helix is

@) along the flow(z) direction and the following kinematic and
Xa orientation conditions are satisfi¢di]
fm=— 5 (N-H)2, (3K)
2 W=A=0, (89)
V1= az— az 3 n=n,, (8h)
Vo= a3+ as, (3m) on
wheret"® is the viscoelastic extra stress tengbris the elas- ot 0, (8¢)
tic Ericksen stress, the viscositiés; ,i=1,...,6 are the Le-
slie coefficients,0F/dn denotes the functional derivative of N= (V. V)n.— % 8d)
the free energy, A is the rate of deformation tensad\ is =(v-V)no=v; dz -

the director Jaumann derivativ) is the vorticity tensorf 4 . . . . . .

is the Frank free-energy densifiK;; ,ii =11,22,33 are the Thus in the !dgal permeation flow, the yelocny gradient is

Frank elasticity coefficients for splay, twist, and befigis ~ 2670: the helix is undistorted, and the director Jaumann de-
the magnetic energy density, is the anisotropic magnetic vative is equal to the convection of orientation. The con-

susceptibility,y, is the irrotational torque coefficient, ang ~ VECted orientation rotates with an angular velocity that ex-
is the rotational viscosity. In the Leslie theory of CLCs, the 8Ctly matches the pitch of the helix, dissipating energy due to

pitch-dependent internal time and length scales, are the _director r.otation, and gi.ving rise to a large apparent vis-
cosity. The ideal permeation flow neglects the boundary

_ 71(152 4 layer of thicknessqgl in which viscous effects are not neg-
Tk (4a) ligibly. Under these restrictions, the apparent viscosjty,
for an ideal steady Poiseuille permeation CLC capillary flow
/o= 1 (4b) under pressure gradieftp, in a capillary of radiuRR is [1]
2
o ﬂapp:%')ﬁ(QOR)z . 9
while the external time and length scales are . .
g Using [1], the following actual valuesR=300um andq,
_ mH? =10"°cm™?, the apparent viscosity has a magnitude of a
Tem T Tk (58 nematic rotational viscosity times a factor of®1Gs mea-
sured by Sakamoto, Porter, and Johngba].
/e=H, (5b)
whereH is the characteristic system size. The ratio of orien-!l. FORMULATION OF THE LESLIE-ERICKSEN LINEAR
tation time scale to an imposed flow time scale is known as MOMENTUM BALANCE EQUATION FOR
the Ericksen number. Since CLCs have two time scales, the CHOLESTERIC PERMEATION FLOW

two dimensionless Ericksen numbers that characterize the

X ) ) . Next, we give a detailed analysis of generalized perme-
ratio of orientation to flow time scales are

ation flow, taking into account boundary layers, using a de-
nqu'y coupled formulation. The decoupled formulation aims at

E; (6a) finding permeation flow kinematics without resorting to the

K use of the director torque balance equation. In addition, the
Y, HZy formulation sheds light on the role of the Ericksen elastic
=Tk (6b) stresses. The spatial gradient of the director-dependent en-

ergy densityf=f,+fy, is given by
where vy is the characteristic deformation rate, aer (K
+ K+ Kzg)/3 is the average Frank elastic constant. The in- Vi= 0_f (V) T+ a_f:(vvn)T. (10)
ternal Ericksen numbeg; gives the ratio of the internal time an dVn
scale to the flow time scale, while the external Ericksen numUsing this expression in Eq30), the divergence of the
ber E gives the ratio of the external time scale to the flow =

time scale. In actual experimerjt] it is found Ericksen stress tensor is shown to be

of of
T <Te, (7 V-tE=—(Vf)+%-(Vn)T—(V~ﬁ)-(Vn)T. (1)
which means that an imposed weak flow will only affect the
global orientation but not the pitch. In this report, we defineTaking the product of the director torque balance Exp)
weak flow whenE; is of order of unity. Whenv',</,, the  with the director gradient tensoNn) "™ we find
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me, T, ho. T:_ﬁ. T :2- — .tve
h™e.(Vn)'+h'-(Vn) on (Vn) v, (X) 5 [I=V(p+fg+fn+fy)+V-t
1
+ly. afd)(Vn)T 12 —(h®=y,v-Vn)-(Vn)T]-(I-Kkk). (17b
avn ’ Equations(17a, (17b) is the LE linear momentum balance

and hence the following general relation between the Erickgqua’qons "’?'0”9 the helix and_perpendlculgr to the helix, re-
Pecuvely, in the absence of inertia, and in the presence of

sen elastic forces, energy gradients, and viscous molecul3P® . . :
field is established: arbitrary director distortions. Next, we focus on the use of

Eqg. (179 to analyze slow permeation flow problems when
VtE=—(Vf)—h"-(Vn)T inertia is negligible and director distortions are weak. In the
small director distortions regime, several terms in B.9
can be ignored, as shown in what follows. Cholesteric per-
meation flow exists when the main flow is along the helix
axis and the flow is sufficiently weak such that the director
field is planar and chiral

an
=—(Vf )—( Yigr TV VnEWen+ yzA-n) (V)T

(13

Equation(13) is valid for any velocity and director fields. N=n°+(pxn° e, (18)
Equation(13) shows the conditions under which the Erick-

sen elastic forces may play an important raie:when the ~ Wherep is the unit vector along the heli) axis, andg is a
gradients of the Frank energy are not zeloVf)|#0, small twist distortion. In the linear regime, the main flow
and/or (i) when the|h’-(Vn)T|#0. An example, of the Velocity in thez direction, obtained from E173 is, in the
former is one-dimensiondllD) permeation flow of a CLC absence of magnetic fields, given by

with wave-vectorg, along thez direction and velocity field 1 Ve

v=(0,0p,), the leading-order term in the Ericksen force in VA(X)=V-k=—5— [-V(p+fy)+V-t° ]-k, (19
the flow direction is Qo1

By L oL T ) ) T where the superscriptd” denotes the linear regime. Averag-
(V-ok (VK vV (Vi) ing the linearized viscoelastic stress term in E) over the
=~ 71050, (14)  pitch, itis found

. . . . ve | _ 2
showing that the elastic Ericksen force is due to the convec- Vo - k=nV, (203
tion of orientation ¢- Vn). Next, we consider the linear mo-

mentum balance equation and replace the gradient of the m:M, (20b)

Ericksen stress with the right hand side of Etf3). Neglect- 2

ing inertia, the linear momentum balance Egb) then be- 1 20

comes Na=73z04, (2009
n.=7(— @t ast as), (209

)
Y Ltve
v(x)= Y1 [=V(ptigtintig+V 1t whereL denotes the normal plane kg 7; is the average of

the nematic Miesowicz viscositieg, and 7, [1]. The gen-

—(h"=yv-Vn)-(Vm)T], (158 eral expression of the primary velocity for permeation flow
T 1aT obtained without explicity consideration of the director field
O =[((Vn)-(Vn)")~"]", (15D g

where® is the anisotropic permeability, arfd=0(g-x) is 9

the gravitational energy. This equation is an alternative and VAXY)= 2|~ (P g+ 7V, (21)
generalized expression of the linear momentum balance G071

equation for CLCs in the absence of inertia. In the absence of

significant viscous deformatiorA=0,W =0) the Leslie Eq. l1l. APPLICATION: GRAVITY-DRIVEN PERMEATION

(15) generalizes Darcy law FLOW

o As an application of Eq(21), we consider the gravity-
V(X)=—[-V(p+fgt+f,+fy]. (1)  driven flow over an inclined flat plate, with a given flow rate
"1 Q, of a CLC of pitchqg, . Let o be the angle of the plate with
the vertical directionH be the CLC film thickness along the
velocity gradient(x) direction, andz be the flow and helix
direction. In contrast to pressure-driven Poisueille perme-

Projecting Eq.(15) along () and normal(L) to the pitch
direction (), we find the velocity fields\(,v,)

o ation flow in a capillary of fixed radiuR, the film thickness
Vi(X)=—:[=V(p+fg+fu+fy)+V -t/ H in film flow is unknown and a function a®, and the flow

" will therefore exhibit a Newtonian regime whéh~q, * and

—(h*=y,v-Vn)-(Vn)T]-kk, (179 a non-Newtonian regime whdﬁ»qgl. The boundary con-
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ditions andv,(x) obtained from Eq(21) are HoQ, (27b)
d?v, 2
= . — H . 27
vA(X) o |9 Coso+ 9oz s (229 * o (279

H varies linearly withQ, depends om,, andH>q,. The

x=0, v,=0, (22b . . . : ; 0
apparent viscosityy,,, for gravity-driven film flow is given
dv, by the shear stress at the wall divided by the shear rate at the
x=H, 5 =0 (220 wall of a Newtonian fluid flowing with flow rat&
whose solutions is ogcosoH?3

Napp— 30 (28)

cos
V,(X)= Qg—z(P[l—cosh,BertanhﬁH sinhBx].
Y10 In the Newtonian regime R~1), the apparent viscosity,

(23)  found from Eqs(26a and(28), is the average of the nematic

The unknown film thicknes$i is found by computing the Miesowicz viscosities

known flow rate (7at 70)
Ma™ Mc
H == (29
Q= f b (X)dx, (24) Tepr T

0

In the non-Newtonian regimée>1), the apparent viscosity,

which vyields the following implicit expression fd# (R): found from Eqs.(27a and (28), is shear thickening

R= BH—tanhgBH, (259 , 3 6n
2 _ 7R _ ¥14oQ
R— QBv14; (25b) Napp 3 3(eg COSO’)2 . (30
egcoso’

In the non-Newtonian regime, the apparent viscosity is sev-

whereR is the ratio of viscous time scale to flow time scale . . .
. i . ) eral orders of magnitude greater than in the Newtonian re-
for gravity-driven flow. The Newtonian regime emerges _.

whenR~1. Expanding tantBH to second order yields the gime.

classical Newtonian film thickness expression and the fol In conclusion, we have derived a new expression for the
. o P Leslie-Ericksen linear momentum balance equation and have
lowing scalings:

used it to formulate a general equation for the primary ve-

3 [ 37:Q locity in permeation flow of CLCs. The gravity-driven film
H(Q)= 09 coso’ (268 permeation flow of a CLC over an inclined plate is analyzed.
In this free-boundary problem, the system size depends on
Hoc QY3 (26b) the flow rate, whose magnitude gives rise to a Newtonian,
thin film low apparent viscosity, slow-flow regime, and a
H#f(do)- (269 non-Newtonian thick film, high apparent viscosity, fast-flow

The film thickness varies nonlinearly with flow rate and is regime.
independent of the pitch. The magnitudetbfs of the order
of g,. The non-Newtonian regime arises whesr 1. In this ACKNOWLEDGMENT
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